K-type hyperbolic slant helices in H3
نویسندگان
چکیده
منابع مشابه
Generalization of general helices and slant helices
In this work, we use the formal definition of $k$-slant helix cite{ali2} to obtain the intrinsic equations as well as the position vector for emph{slant-slant helices} which a generalization of emph{general helices} and emph{slant helices}. Also, we present some characterizations theorems for $k$-slant helices and derived, in general form, the intrinsic equations for such curves. Thereafter, fr...
متن کاملk−type partially null and pseudo null slant helices in Minkowski 4-space
We introduce the notion of a k-type slant helix in Minkowski space E1. For partially null and pseudo null curves in E1, we express some characterizations in terms of their curvature and torsion functions. AMS subject classifications: 53C40, 53C50
متن کاملSlant Helices in Euclidean 4-space E
We consider a unit speed curve α in Euclidean four-dimensional space E and denote the Frenet frame by {T,N,B1,B2}. We say that α is a slant helix if its principal normal vector N makes a constant angle with a fixed direction U . In this work we give different characterizations of such curves in terms of their curvatures. MSC: 53C40, 53C50
متن کاملSlant helices in three dimensional Lie groups
In this paper, we define slant helices in three dimensional Lie Groups with a bi-invariant metric and obtain a characterization of slant helices. Moreover, we give some relations between slant helices and their involutes, spherical images.
متن کاملSome Characterizations of Slant Helices in the Euclidean Space E
In this work, the notion of a slant helix is extended to the space E. First, we introduce the type-2 harmonic curvatures of a regular curve. Thereafter, by using this, we present some necessary and sufficient conditions for a curve to be a slant helix in Euclidean n-space. We also express some integral characterizations of such curves in terms of the curvature functions. Finally, we give some c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2020
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil2014873u